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SPH {smoothed particle hydrodynamics) is a gridless Lagrangian
technigue which is appealing as a possible alternative to numerical
technigues currently used to analyze large deformation events. Re-
cent tests of the standard SPH method using the cubic B-spline
kernel indicated the possibility of an instability in the tensile regime,
even though no such difficultias were observed in compression. A
von Neumann stability analysis of the SPH algorithm has been
carried out which identifies the criterion for stability or instability
in terms of the stress state and the second derivative of the kernel
function. The analysis explains the ohservation that the method is
unstable in tension while apparently stable in compression but
shows that it is possible to construct kernel functions which are
stable in tension and unstable in compression, The instability is
shown to result from an effective stress with a negative modulus
{imaginary sound speed) being produced by the interaction between
the constitutive relation and the kernel function and is not caused
by the numerical time integration algorithm. That is, changes in the
effective stress act to amplify, rather than reduce, perturbations in
the strain. The analysis and the stability criterion provide insight
into possible methods for removing the instability. © 1995 Ace-
dernic Press, lnc.

1. INTRODUCTION

SPH (smoothed-particle hydrodynamics) [1-8] is a gridless
Lagrangian technique which is appealing as a possible alterna-
tive to numerical techmques currenily used to analyze high
deformation events. While Eulerian techniques can easily han-
dle the gross motions asseciated with the large deformations
involved in such events, detailed analysis is difficult because
of the lack of history and the smearing and spreading of informa-

* This work was performed at Sandia National Laboratories and was sup-
ported by the U.S, Department of Energy under contract number DE-ACD4-
76DP0O0789.

tion as the mass moves through the fixed-in-space Eulerian
grid. Standard Langrangian techniques, although desirable due
to their ability to keep accurate histories of the events associated
with each Lagrangian element, are difficult to use because the
material deformations are so large that the Lagrangian grid
becomes severely distorted and the calculation breaks down.
SPH offers a potential solution to these difficulties. However,
SPH is a relatively new method, especially in applications
involving solid materials capable of supporting deviatoric and
tensile stresses, Thus, critical evaluations and tests are needed.
This paper describes a stability analysis of the SPH equations;
the need for this has been recognized for some time {3] and
interest in the subject is increasing [9].

Tests of the standard SPH method indicate an instability in
the tensile regime, even though the calculations appear tc be
stable in compression, The simplest example of a test calcula-
tion exhibiting the instability involves a body which is subjected
to a vniform initial stress, either compressive or tensile. The
positions of particles near the boundaries of the body are fixed
to avoid wave propagation which relieves the initial stress, The
calculations described below use the cubic B-spline kernel [8)
and have all viscosities turned off in order to separate properties
of the basic algorithm from effects due to artificial viscosity.
Figure 1.1 shows the initial configuration for a two-dimensional
calculation. A velocity perturbation of 107° km/s is applied to
a single particle at the center of the body. If the swress is
compressive, no change in the particle positions is detected,
since at the initial perturbation velocity it would take 10° s for
a particle to move a distance equal to the particle separation,
However, if the stress is tensile, the result in Fig, 1.2 is obtained
after only 100 ws. The magnitude of the effect is clear. The
particles have clumped together and large voids have formed,
seriously affecting the uniform density initially present in the
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FIG. 1.1. 1nitial particle positions in 2I) stability test.

calculation. Similar effects are seen whether test problems are
un in one, two, or three dimensions, For example, resulis
from a one-dimensional analogue of the above two-dimensional
calculation are shown in Fig. 1.3, which is a plot of the velocity
history of the perturbed particle for initial stresses correspond-
ing to various initial volume strains. The large perturbations in
particle positions such as illustrated in Fig. 1.2 are due to
exponential growth of particle velocities, clearly indicating the
presence of an instability. The velocity grows by many orders
of magnitude for any level of tensile stress (negative volume
strain), although the growth rate depends on the stress level.
The velocity does not grow if the stress is compressive {positive
volume strain}. However, even in the unstable cases the expo-
nential growth does not continue indefinitely, but eventuaily
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Particle positions at 100 us, showing the effect of the tensile insta-
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FIG. 1.3. Perturbation amplitude histories for various initial levels of vol-
ume strain, 7 = | — p/p.r, where p; is the intial density at which the calenlation
is started and p. is the reference density at which the siress in the material is
zero. The stress, which for small strains is proportional te the strain, is compres-
sive if the volume strain is posifive, and tensile if the volume strain is negative.

switches to a somewhat oscillatory motion. The instability thus
results in particle clumping rather than complete blowup of
the particle positions to infinity. Unfortunately, this artificial
numerical clumping mimics physical processes of fracture and
fragmentation in many situations, making the instability hard
to detect.

The stability analysis provides a criterion for instability in
terms of the stress state and the second derivative of the kernel
function. It provides an explanation of the behavior seen in the
figures, including the unusual property of apparent stability in
compression coupled with instability in tension. It also explains
the termination of the exponential growth phase after large
enough levels of distortion have been reached.

2. SPH EQUATIONS

2.1. Kernel Approximation

Consideration of standard Lagrangian finite-difference tech-
niques [10] shows that the major purpose of the spatial grid is
1o provide a basis for the construction of approximations to
spatial derivatives. The smoothed particle technique involves
replacing grid-based approximations with algorithms applicable
to an arbitrary collection of interpolation points. The basis of
the method is the kernel estimate [5],

il J

flx)= 2 %;f(x NW(x - x*, k),

F

2.0

where f is a vector function of the three-dimensional position
vector x, m”, and p’ are the mass and density at point J, and
W(x — x, k) is an interpolating kernel function with smoothing
length A. The requirements that are usually placed on the kernel
function [3] are (1) it reduces to the delta function,
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ling Wix, by = 8(x), (2.2)

(2) 1t 18 normalized,

f Wix, b) dx = 1, (2.3)

and (3} it has compact support (is zero everywhere but on a
finite domain),

W(x,h)=0 for|x|=2h. 2.4)

The approximation for spatial derivatives is obtained by taking
the divergence of Eq. (2.1} with respect to x,

Vflx)~ 2”‘_, X)) VW ~x\ k). (2.5

The above equations provide continugus approximations to a
vector function and its divergence based on an arbitrary set of
discrete interpolation points at which the function is known.
No connectivity or spatial relation of the points is assumed.

2.2. Conservation Laws

The SPH method provides numerical solutions to initial-
boundary value problems defined by the conservation laws of
continunm mechanics plus constitutive relations for the materi-
als involved. In the case in which the material description is
energy-independent, the conservation laws to be solved express
the conservation of mass

h~Nh-E

==V V=—V-(pV)-V Vplip (2.6)

where v is the velocity vector and the superimposed dot on the
density refers to the material time derivative, plus the conserva-
tion of momentum

2.7

where ¥ is the acceleration and o is the Cauchy stress tensor,
taken as negative in compression. The kernel approximation is
used for the spatial derivatives in these expressions. Various
schemes exist for advancing the sclution in time, but a simple
centered-difference scheme, sometimes known as a leapfrog
scheme, for the approximation of time derivatives will result in
a numerical algorithm which differs from a standard Lagrangian
finite-difference technique only in the approximations to the
spatial derivatives.

125

2.3. One-Dimensional SPH Equations

In one dimension, the SPH expression for conservation of
mass becomes

aW(u”)
EETIE

Em"(x - x’

(2.8)

where the expanded form of V - V¥ from Eq. (2.6) is used in
order to avoid density difficulties at the boundaries [5]. The
expression for conservation of momentum is

= _imf(_‘fj_+nu)m_
< Py

ax?
In the above expressions x is the velocity, the interparticle
distance is

(2.9)

ul =1xt — xfy, (2.10)
and TI" is the artificial viscosity in the form proposed by
Monaghan [11]. The dependence of the kernel function on the
smoothing length has not been explicitly inciuded in these equa-
tions.

Although many aunthors use a symmetric form [3] of the
equation of motion {conservation of momentum) in order to
ensure exact momentum conservation, the asymmeiric form
has been used here for simplicity. In any event, it should be
noted that under the simplifying assumptions which will be
made during the course of the stability analysis the asymmetric
and the symmetric forms reduce to the same expression.

3. INSTABILITY CRITERION

A stability analysis of the SPH equations will be carried out
which will result in a sufficient condition for instability. In
order to reduce the algebraic complexity of the analysis, simpli-
fled forms of the equations are first obtained. A summary of
the steps involved in the analysis will help to motivate the
assumptions made in simplifying the equations.

3.1. Stability Analysis Sketch

The SPH equations will be subjected to a stability analysis
of a type which was popularized by John von Neumann (1903—
1957); the basic idea can be traced back to Jean Baptiste Joseph
Fourier (1768-1830). A von Neumann stability analysis con-
sists of the following steps 112):

I, Obtain the equations of first variation, which describe
the propagation of small perturbations in the original equations.
This is done by applying perturbations of the form

x—x+ 0x

(3.1
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to each of the variables, then subtracting the unperturbed equa-
tions, keeping only terms which are first order in &x. All unper-
turbed quantities in the equations are frozen; the coefficients
of the perturbations are considered constants. The resulting
equations are known as the perturbation propagation equations.
It should be emphasized that the analysis is concerned with the
behavior of small perturbations, so that linear terms are domi-
nant and nonlinear terms can be neglected (8” <€ § when § <
1}. This is the reason that the perturbation equations are linear-
ized and that nonlinear terms can be dropped in the initial
process of simplifying the equations. This does not reduce the
generality of the analysis, since it is the initial stability of the
method that is of concern, not the behavior at late stages after
significant unstable growth has occurred and nonlinear effects
may contribute.

2. Perform a Fourier analysis of the perturbation propaga-
tion equations, which involves assuming a separation of vari-
ables solution of the form

Sx(X, 1) = Bx (e, (3.2)

where X is the Lagrangian coordinate and & is the wavenumber
of the perturbation.

3. For the resulting system of equations, find the amplifica-
tion matrix A, defined by

U= AU, (3.3)

where U*! is the vector of values at the new time step, and

U is the vector of values at the old time step. The eigenvalues

of A, which depend on the wavenumber of the perturbation,

determine the stability of the system of equations. If the largest

eigenvalue exceeds unity, the amplitude of the value vector
increases exponentially with time,

3.2. Simplified One-Dimensional SPH Equations

The most critical step in performing a stability analysis of
the SPH equations is the reduction of the general forms involv-
ing sums over neighbor particles to simpler forms which are
amenable to stability analysis but still retain the stability proper-
ties of the general equations. All simplifying assumptions which
have been made for purposes of the analysis have been computa-
tionally verified to satisfy this requirement by direct substituticn
into a numerical code. In fact, calculations suggest that the
simplified equations are more stable than the general forms.

If it is assumed that the smoothing length is equal to the
initial interparticle distance, then nearest neighbors contribute
to the particle sums, while next-nearest neighbors located a
distance 2k away do not, since both the kernel function and
its derivative are zero for ™ = 2h. Although the analysis will
be generalized in Section 5 to include an arbitrary number of
neighbors and an arbitrary ratio of smoothing length to particle

SWEGLE, HICKS, AND ATTAWAY

spacing, for the present only nearest neighbors are considered.
Equations (2.8) and (2.9) then reduce to

F').' — _m[(if — i.i’ﬁ—l)Wr(wLHl)

3.4
—_ (xf _ .}.K'[_I)WJ(M"’I“])] ( )
and
wl O-l+l LIt ' Li+
A =Tm il LS A Chaly
re (3.3}

0.1'—1
— - 17_1 +1’If.i’kl W-'(u.',f—l) R
p'p

where it has been assumed that the particles have been num-
bered in order of increasing position, x, so that J — 1 is the
index of the nearest neighbor in the negative direction, while
!/ + 1 is the index of the nearest neighbor in the positive
direction. In writing these equations use has been made of the
fact that in one dimension the derivative of the kernel function
reduces to

AWty {W’(u“), x>t

ax’ __Wl'(ui'_l')’ (36)

xf <X,

where the prime on W refers to the derivative with respect 1o
the argument. in one dimension, W has dimensions of length™,
while the mass, m, should be interpreted as mass per unit area,
with the cross-sectional area numerically equal to one. The
dimensions of W' are thus length™2.

While it is possible to perform a stability analysis on Egs.
(3.4) and (3.3), the algebra becomes quite tedious, and clarity
dictates further simplification of the equations before proceed-
ing. If the densities in the denominators of Eq. (3.5) are taken
to be constant for small perturbations, then

_:x-l — _ﬂz [(O.H—l + QU-H)LV!'(HLH-I)
p (3.7

— (@ + QUYW @ Y),
where
QHH = pATHL, (3.8)

Time derivatives will be approximated by centered-difference
expressions, so that an equation of the form

d_'f =
=8 (3.9)
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will become

fn+uz _fnfliz
—— = g7, 310
Ar 8 (3.10)
where the superscripis involving n denote the time at which
the quantity is evaluated.
The one-dimensional SPH equation of motion thus becomes

j:.',n+l!2 — J'Cf,n—l,fz — _m_et(THlWJHm _ T,r-] er— wz)..;, (3l ])
P

where

W = i), (3.12)
the total stress, T, is given by

TH = gt + QI (3.13)

and the linear term in the SPH viscosity [11] reduces in one
dimension to

QH].Q = QM = pZII!J+l = a'pc(fc"” —fr")
3.14)

= a(x"! _.)'C.'),

where o’ is the original dimensionless coefficient [11] and
additional constants have been included in the dimensional
constant «. The quadratic term in the viscosity need not be
considered, since it will be linearized in the perturbation propa-
gation equations and the linear term is dominant for small
perturbations in any event.

The only density dependence in Eq. (3.11) comes from the
dependence of the stress, o, on density. A linear dependence
of stress on strain (Hooke’s law) is described by the relation

o= —Knxpucl(l —%), (3.15)

where K = pyc? is the bulk modulus, n is the volume strain,
c is the sound speed, and stress is taken as negative in compres-
sion. Rather than using the continuity equation (conservation
of mass) to find the strain, it can be noted that in one dimension,
the volume associated with an interpolation point is determined
by the positions that are half-way between the point and its
neighbors to the left and right. The density can thus be deter-
mined from

=" (3.16)
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FIG. 3.1. Stability regimes for the cubic B-spline kernel.

Therefore, the stress can be expressed in terms of the particle
positions by

o' = —K[l - - xf-l)]_ 3.17)

L

Calculations using this simplified relation show that it produces
solutions that are consistent with those provided by the continu-
ity equation, and in fact it possesses smaller growth rates in
unstable regimes. The only variables in Eq. (3.11) are thus
velocity and position, which are related by

xiHl = gle 4 Apydat1Z (3.18)

Equations (3.11} and (3.18) constitute the simplified SPH equa-
tions to be analyzed for stability.

3.3. Results

The algebraic details of the stability analysis are given in
Appendix A, The shortest wavelength, A, capable of being
resolved by the discrete system is twice the particle spacing.
The results show that at A, a sufficient condition for unstable
growth is

W >0, (3.19)
where W" is the second derivative of W with respect to its
argument and is thus the slope of W', The convention which
is used throughout is that the stress 7'is negative in compression
and positive in tension. The instability condition is independent
of the artificial viscosity coefficients and the form of the kernel
tunction. There are no stress or strain threshelds for the onset
of the instability. The condition involves only the sign of the
product of the 1otal stress times the second derivative of the
kernel function.

Figure 3.1 schematically summarizes the stability regimes
for the specific case of the cubic B-spline kernel. If the slope
of the derivative of the kernel function is positive, the method
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is unstable in tension and stable in compression. If the slope
is negative, it is unstable in compression and stable in tension.
The derivative of the cubic B-spline kernel has its minimom
value at 4 = 2/3h. In the standard configuration in which the
particle spacing is equal to the smoothing length, the nearest-
neighbor particles are at ¥ = A, and the next-nearest-neighbors
are at ¥ = 2h and do not interact. Thus, the standard configura-
tion is stable if the stress is compressive, but unstable if it
is tensile.

4. PHYSICS OF INSTABILITY GROWTH

While Eq. (3.19) provides a precise mathematical condition
for instability, it does not provide a simple physical explanaticn
of why SPH is unstable. In this section arguments are made to
explain the reasons for the unstable behavior in terms of the
form of the SPH equations. The mathematical models presented
here are concerned with providing an intuitively understandable
and easily communicable picture of the physics of the instabil-
tty. This provides insight into the properties of the kernel func-
tion which are responsible for the instability and thus indicates
possible means of removing the instability.

In one dimension, conservation of momentum is expressed by

da
g =27 4.1
o ot X’ @D

where viscous stresses have been ignored, so that T = o
In the discretization process associated with standard finite-
difference methods, the partial derivatives are replaced by dif-
ferences, so

. Ax _ Ae

vy (4.2)

However, pyAX is just the mass, so the finite-difference equation
of motion has the form

. a
¥="ow Ao

(4.3

However, Eq. (3.5) shows that the form of the SPH equation
of motion is

¥ A(—oW'), (4.4)

where the difference operator A 1s a result of the sum over
particles, Comparison of Egs. (4.3) and (4.4) shows that in SPH
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FIG. 4,1. Stable stress—strain relation and resulting SPH effective stress—
strain relation after modification by —W".

the effective stress is proportional to — o'W’ Figure 4.1 shows
that when a normal monotonically increasing stress—strain rela-
tion is multiplied by a function like —W’ which eventually
goes to zero as particles separate, the resulting SPH effeciive
stress—strain relation will contain regions where the effective
stress decreases with increasing strain, producing a negative
modulus and thus an imaginary sound speed. The stress—strain
relation is clearly unstable in such a region, since changes in
stress act to amplify, rather than reduce, changes in strain.

Note that Eq. (3.5) and Eq. (4.4) are independent of the
numerical time integration algorithm, and thus the instability
is not caused by the temporal difference scheme, but rather by
the effective SPH stress containing regions with imaginary
sound speeds. This point can be further illustrated by consider-
ing the one-dimensional wave equation

P

(4.5)

where u is displacement and ¢ is the sound speed, VdP/dp.
Perform an elementary Fourier analysis by substituting into
this equation a solution of the form

u=ette (4.6)
The resulting growth factors are given by
g =V —c¥~ (4.7)

Thus, if ¢? = 0, the growth factors are imaginary and solutions
are bounded, while if ¢? < 0, the growth factors are real, and
the displacement increases exponentially in time. This result
is a property of the differential equations and is not caused by
any numerical solution technique.

The above analysis can be extended to show why the instabil-
ity condition is independent of the artificial viscosity coeffi-
ctents. The linear artificial viscosity term is related to the veloc-
ity gradient by

du u
o g— = .
Qoo o

(4.8)
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Since the acceleration due lo the artificial viscosity is related
to the gradient of the viscous stress, the wave equation becomes

0% 0% 0%u
—_— —_— [ 4‘
ar “axc “arax (4.9)
and the growth factors are given by
— 2 + N FAY . 4 2k2
Lol Ve 24 (4.10)

2

if ¢* < 0, the growth factors are real and the displacement
increases exponentially in time, regardless of the value of the
artificial viscosity coefficient. Thus, artificial viscosity cannot
stabilize the imaginary sound speed condition responsible for
the SPH instability. The addition of quadratic viscosity terms
will not help, since the quadratic viscosity term is only dominant
in high gradient regions such as shock fronts, and the linear
viscosity term dominates when gradients are small, such as
during the initial growth of the instability.

The above discussion, while showing how the kernel function
can introduce nonlinearities into the problem which can cause
instabilities, seems to indicate that an unstable regime would
not be entered until enough strain had accrued to cause the
product of the equation-of-state stress times the kernel function
to change stope, However, the instability criterion, Eq. (3.19),
shows no thresholds. This is due to the fact that Eq. (4.4) does
not include the frequency dependence of the stability analysis
leading ta Eq. (3.19).

Referring to the details of the stability analysis in Appendix
A, it can be seen that Eq. (A.10), the perturbation propagation
equation, has the form

Adx

B === A(B(—aW') = A(- oW = W'so), (4.11)

where the coefficients of the perturbations are constants and,
again, viscous stresses have been ignored, so that T = o. How-
ever, when the frequency dependence of the perturbation is
considered, as in Egs. (A.24) to (A.27), it is found that at the
shortest wavelength.

Wéo=0. (4.12)
Thus, at Ay,
% = —aA(8W"), {4.13)
which is the equation of first variation of
P —gAW". (4.14)

Comparison with Eq. (4.3) shows that at the minimum wave-
length, the effective stress is just a constant multiple of the
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FIG. 4.2, Effective stress at the minimum wavelength.

kernel function derivaltive, dependent only on the signed magni-
tude of the stress. Thus, as shown in Fig. 4.2, the effective
stress is just an image of the kernel function.

If the stress is compressive, o is negative and the effective
stress is proportional to W'. When the slope of W' is positive,
compressive stress decreases as particles separate and increases
as particles approach, which is stable. When the slope of W'
is negative, compressive stress increases as particles separate
and decreases as particles approach, which is unstable.

If the stress is tensile, o is positive and the effective stress
is proportional to —W'. When the slope of —W' is positive,
tensile stress increases as particles separate and decreases as
particles approach, which is stable. When the slope of —W'
is negative, tensile stress decreases as particles separate and
increases as particles approach. which is unstable.

The above constitutes a lengthy statement of the condition
expressed so concisely in Eq. (3.19), but it does give a physical
interpretation of the instability condition. The normal situation
in which the cubic B-spline kernel is used with nearest-neighbor
particles Iocated at u = A is unstable in tension and stable in
compiession. However, it can be seen that whenever the slope
of W' is not zero, either tension or compression will be unstable.
This result is not caused by the numerical time integration
algorithm, but 1s instead the result of the kernel approximation
producing an effective stress with a negative modulus and, thus,
imaginary sound speeds,

5. INSTABILITY CONDITION FOR AN ARBITRARY
NUMBER OF NEIGHBORS

The stability criterion derived in Appendix A assumes that
only nearest neighbors interact, in that it includes terms only
at f = 1. However, having the analysis as a guide, it becomes
clear that an extension to include an arbitrary number of neigh-
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FIG. 5.1. Particle—kemel interactions for various smoothing lengths.

bors will result only in extra terms in the equations for particles
at f = 2,1 = 3,1 = 4, etc. For instance, each term in Eq.
(A.10) will be repeated with indices / = 1 changed to I = 2,
then repeated again using I + 3, and so on. As these terms are
carried forward they result in terms with different powers of
E in Eq. (A.24). In these equations, the values of W' and W”
have been evaluated at # equal to the distance from particle 7
to particles at I = 1. These values will change for particles at
I = 2, etc., but if it is still assumed that other quantities such
as stress are the same ar all particles, the generalized form of
the instability criterion can easily be demonstrated to be

(W”.f,!:l + W”{,!H + WIS . ) T>=0. (51)
Thus, it is just the sum of the values of W” at all particles with
odd separations from particle [ falling within the smoothing
length 24 which determines whether the system is stable in
tension or compression. The particies at even separations, such
as I % 2, I + 4, ec., do not contribute because they result in
terms in Eq. (A.27) which contain cos 2/7 — 1, where [ is an
integer, while the odd particles result in terms which contain
cos{2! + 1)m — 1. Thus, various situations can result, as indi-
cated int Fig. 5.1, depending on the relation of the smoothing
length to the initial particle spacing. In this figure, the even
particles which do not contribute have been crossed out. Note
that for the cubic B-spline kernel, a smoothing length of 1.5AX
results in odd particles being located where the slope of W’ is
zero. This configuration is thus stable in one dimension for
very small perturbations, but for larger perturbations the parti-
cles move to regions of nonzero slope and instability again re-
sults,

6. CONCLUSIONS

A stability analysis of the SPH algorithm has provided a
simple criterion for the instability of the method which depends
only on the sign of the product of the stress times the second
derivative of the kernel function. There are no stress or strain
thresholds for the onset of the instability. In standard SPH
catculations using the cubic B-spline kernel the instability will
normally only occur in teusion. It is thus typically not a problem
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with equations of state that do not generate tensile stresses,
which is the usual case in astrophysical applications; it will
more frequently be encountered when SPH is extended to
solid dynamics.

The instability criterion is independent of the viscosity coef-
ficients and the instability cannot be removed by increasing the
amount of artificial viscosity. However, the perturbation growth
rate does depend on the stress level and the amount of artificial
viscosity. Thus, whether or not effects of the instability are
observed depends on the perturbation growth rate, the amplitude
of the perturbations, and the amount of time the system remains
in an unstable regime.

The instability is not caused by the time integration algo-
rithm, but is due instead to a negative effective modulus (imagi-
nary sound speed) resulting from the interaction of the kernel
function with the constitutive relation. In other words, the insta-
bility is due to an effective stress which amplifies, rather than
reduces, the applied strains. Although the effective modulus is
frequency dependent, it is the highest frequency capable of
being resolved by the discrete system, commonly called the
noise frequency, which has the maximum growth. Thus particle-
to-particle fluctuations which grow with time are the result of
the instability. However, growth only continues so long as the
particle spacings result in a stress state and a value of W" which
satisfy the instability criterion. Particles will thus tend to clump
together in stable configurations, as has been previously ob-
served [13, 14]. This clumping resembles fracture and fragmen-
tation, but is in fact a numerical artifact.

Although the usual situation involving the cubic B-spline
kernel with the smoothing length equal to the particle spacing
is unstable in tension, instability in compression is also possible
for different kernels. Various schemes suggest themselves to
create a kernel coupled with a variable smoothing length so
that the system is stable for the current sign of the stress. For
instance, calculations verify that a kernel with W" everywhere
equal to zero is stable in all stress regimes. Unfortunately, such
akernel clearly cannot go to zero smoothly as the initial distance
between particles increases, and this is one of the major require-
ments usually placed on the kerne! in order to achieve compact
support so that only particles within a limited range interact.
Thus, local support results in at least sorne portion of the kernel
function having W” positive, which is unstable in tension. How-
ever, it seems unnecessary for the kernel to have regions where
W" is negative. A kernel modified in this way would eliminate
the possibility of instability in compression. It remains the topic
of further work to determine the required properiies of the
kernel function which maximize the accuracy and stability of
the SPH method.

APPENDIX A

A.1. Perturbation Propagation Equations

In order to investigate the stability properties of Eqs. (3.11)
and (3.18), we wish to consider the evolution of small perturba-
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tions in the independent variables. That is, let positions be
pertarbed to

x!,n+l _)x.’.n+l + 6x14n+1 (A.l)
and velocities be perturbed to
j:.',n+ln'2_> ki‘rﬁ- 12 + 5i[.n+10._ (A.E}

Each position and velocity, regardless of its spatial and temporal
index, will be replaced by a perturbed value as demonstrated
in the above two equations. The equations describing the evolu-
tion of the perturbations are obtained by substituting the per-
turbed quantities into Eqgs. (3.11) and (3.18), retaining only
those terms that are linear in the perturbations and subtracting
the original equations. All quantities other than the perturba-
tions are assumed to be constant for purposes of the analysis.

The resulting expressions may be simplified by noting that
the position and velocity perturbations of Eqs. (A.1) and (A.2)
result in the following perturbations in the equation of state
stress,

Gy gl 4 St (A3)
the viscous stress,
Q.’+lf2‘n — QIHILR + 5Ql+1’l"’ (Ad)
and the kernel function derivative,
W' 1n _y W I Sy it (A.5)
where
Sl — %i_((é\xm,n — Sxiny, {A.0)
SQIIN = g (ST gty (A7)
SW! IR = Wi (Sxlthn — xln), (A.8)

The last equation follows from a first-order Taylor series expan-
sion of W' and is independent of the form of the kernel function,
W" is the second derivative of W with respect to its argument
and is thus the slope of W'.

Using the above notation, the perturbed form of Eg. (3.11) be-
comes

il‘rﬁlﬂ + 8.,'%"’"“"2 _ ki,n—l.'Z — Skl,n—iﬂ

— _?&25 [(U.Hl,n + QHI!Z,n + 6a.f+],n + 8Ql+1f2,n)
P

(W’l+lf2,ﬂ + 6Wfl+li2,ﬂ)
— (U.ffl,n + Ql—l.’2.n + aa.f—l.n + 6Q.’~1f2.n]
(W'.’—IfZ.n + 5W’ I—ln’l‘n)]

(A.9)
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The linearized form of this equation, after dropping the higher-
than-linear terms in the perturbations and subtracting the origi-
nal equation, becomes

Silmlz _ gpiami2 — _mef (THIn W'+ V2n — Ti=1a GYy 7 =1
o

+ WJ I+]f2.n60.!+1.n _ wl =12 60-.'—].11
+ WUHQ.R&QHI.’Z,n . Wl‘!—ln'lnan—ll‘Z,n)
(A.10)

where the total stress, T, is given by

TPrl,n = o..'+l,ﬂ + Ql+li2,ﬂl (A.l 1)
This result can easily be verified by noting that each cross-
product produces surviving terms which consist of the constants
in the first term times the perturbations in the second, plus the
constants in the second term times the perturbations in the
first. Substituting Eq. (A.6), Eq. (A.7), and Eq. (A.8) into Eq.
(A.10) yields

SxlrHin = gylami

— m_Alt {W"HHZ‘RTHI'"(CSXHI‘" _ ax?.u)
f2

. W" i=1/2.n TI—l,n(axm — 6x1—l,n)

K
T % [W-'I+]f2,n(6xl+2.n _ 5x1,n)

(A.12)
- W’l—lﬂ,n(axl,n _ 5)61_2‘”)]
+ a[W’Hlli.n(akHl,n*lﬂ — 55("’"_”2)
_ W’f-*l.’ln(&}'c.',n—lﬂ _— 6*1—].;1—]!2)]}
and
Sl = Sxln 4 ArSiirt1, (A.13)

These equations describe the propagation of small perturbations
in the velocity and position.

A2, Fourier Decomposition

A Fourier analysis is now performed which involves the
assumption of a separation of spatial and temporal variables of
the form

Sx'n = Sx E’, (A.14)
Sx!m1? = gy (A.15)

where
E' = (™Y = cos(/kAX) + i sin(fkAX) (A.16)
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describes the spatial variation of the perturbed quantities. In
this expression X is the initial, or Lagrangian, coordinate,
so that AX is the initial uniform spacing between particles
and E' represents £ being raised to the power /, rather than
an index. The position of particle [ at time zero is thus
given by

= IAX. (A7)

The perturbation is assumed to be periodic with wavenumber,
k, which is the circular inverse of the perturbation wavelength,
A, so that

kAX = 2—; AX.

Substituting the separated variable solutions into the perturba-
tion propagation equations and dividing by £’ yields

(A.18)

Sxrtil = Syr-it
mAI{WnHmnTJHn(E_. )]
P
— WrimiaeTi ] — B

K
+ EO_[W!HIIZ.J:(EZ -
2m

(A.19)
- W' l*l.’2,n(1 — EZ)]}(SX

amAt Q2w g — 1)
— Wr.'—lfz,n(} _ E—l)]&jn—lﬁ‘z

and

Sxmt! = &x" + Ardxrt'?, (A.20)

These expressions can be simplified by considering the case of
a uniform initial state, so that .

W/ itlia — Wii-e = W'
b

PIHn — Wri—2e — e
Witz = Wriin = W,

(A21)
(A22)

and

Titin = Thle = T {A.23)
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Equation (A.19) then becomes

é‘j:n-H!) — é‘x'.n* 112

_ A [W"T(E +ET—2)
o (A.24)
+ R (B E - 2)]&
%W_AI‘(E_F E - 2)&,&!:71&‘
However,
E+E—2= 2(0051—?—)(- 1) (A25)
while
E2+E‘Z—2—2(cosﬂf—x— 1). (A.26)
Equation (A.24) thus becomes
6i!,n+lf2 — ajm—uz
_ 2mAt [W,,T( 0s 278X _ )
P’
Kw'
-+ Pozm (COS 4fo - ])]5):” (A.2T7)
_ 2ami;V Ar (cos rAX I) peyrry
P A

The first term in brackets multiplying 8% involves kernel varia-
tions at constant stress, while the second term in brackets muiti-
plying 8x" involves stress vanations at a constant value of
the kernel. The term multiplying §x**~'2 involves the artificial
viscosity., The shortest wavelength perturbation which can be
resolved by the discrete system is
Amin = 2AX, {A.28)
At this wavelength the term involving stress variations goes to
zero, so that the equation of state stress has no effect on the
propagation of perturbations at the shortest wavelength.

A3, Amplification Matrix Eigenvalues
The perturbation propagation equations can be rewritten in

the form

Syt = (] — rAr)Sx"V2 + s At Syt (A.29)
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and
—Ardx" 2+ Syt = 8x, {A.30)
where
r=2amW (cos 2mAX 1) (A31)
P
and
2
§ = —fp—'? [W”T(cos 2mAX _ l)
A32
LKW ATAX 1) (A-32)
2m A )
Rewriting these equations in matrix format yields
LU =RU", (A.33)
where the vector of new velocities and positions is
6)'cn+1.'2
Ut = [&"H :] {A.34)
the vector of old velocities and positions is
6'%!:—1.’2
Ur= , A35
] (a35)
and
L [ ' 0] (A.36
S l-ar 1l 30
(1 —rAr) sAr
R= 0 At (A37)

The stability of this set of equations is determined by the
eigenvalues of the amplification matrix A, where

Ut=AU" (A38)
Comparison with Eq. (A.33) shows that
A=L"R. (A.39)

Determination of the cigenvalues of A can be simplified by
noting that
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A~ A =0es|L1lA—AI|=|R—AL|=0. (A40)

Thus, an equivalent procedure is to find the eigenvalues of

sAt

. [(1—rm-i)
1—A

R—AL= - . Adl
AAr ] ( )

The resulting eigenvalue equation is

X (rAr—sA2 =2+ 1 —rAt=0. (A42)

A4, Instability Condition

The system is unstable, which is to say that values will grow
exponentialiy, if the largest value of A which results from the
solution of Eq. (A.42) exceeds unity. Determination of stability
is simplified by writing the eigenvalue equation in the form

Ar-2BA+C=0, (A.43)
where
B=1"+8, (A.44)
2 _
8= SAI—_W’ (A.45)
2
C=1-rAt (A.46)

The value of the maximum eigenvalue depends on the value
of the discriminant D, where

D=pB?-C, {A.47)
so that the eigenvalues are given by
A=BxDp* (A.48)

There are several cases to consider based on the sign of D and
the magnitude of B, but in the current analysis all cases reduce
to the statement that

D=0 (A.A9)

is a sufficient condition for instability [15]. Combining Eqgs.
(A.44) to (A.47) yields

D=sA*+ &, {A.50)
so a sufficient condition for instability is
§>0. (A.51)

Note that the viscosity coefficient & is contained only in the
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constant r, so viscosity cannot stabilize the system if Eq. (A.51)
is satisfied.
At Ay, Eqs. (A.28) and (A.32) show that

T w2

Therefore, a sufficient condition for unstable growth of the
shortest wavelength (twice the particle spacing) is
W"T > 0, (A.53)

where T is negative in compression and positive in tension. On
the other hand, if
W'T < 0, (A.54)

the system is conditionally stable, which means that the time
step must be limited in order to achieve stability.

(= N .
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